Gromov - Witten theory of A n - resolutions

نویسنده

  • Davesh Maulik
چکیده

We give a complete solution for the reduced Gromov-Witten theory of resolved surface singularities of type An, for any genus, with arbitrary descendent insertions. We also present a partial evaluation of the T -equivariant relative Gromov-Witten theory of the threefold An × P 1 which, under a nondegeneracy hypothesis, yields a complete solution for the theory. The results given here allow comparison of this theory with the quantum cohomology of the Hilbert scheme of points on the An surfaces. We discuss generalizations to linear Hodge insertions and to surface resolutions of type D,E. As a corollary, we present a new derivation of the stationary Gromov-Witten theory of P1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wall-crossings in Toric Gromov–witten Theory Ii: Local Examples

In this paper we analyze six examples of birational transformations between toric orbifolds: three crepant resolutions, two crepant partial resolutions, and a flop. We study the effect of these transformations on genus-zero Gromov–Witten invariants, proving the Coates–Corti–Iritani–Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepa...

متن کامل

Wall-crossings in Toric Gromov–witten Theory I: Crepant Examples

The Crepant Resolution Conjecture of Ruan and Bryan–Graber asserts that certain generating functions for genus-zero Gromov–Witten invariants of an orbifold X can be obtained from their counterparts for a crepant resolution of X by analytic continuation followed by specialization of parameters. In this paper we use mirror symmetry to determine the relationship between the genus-zero Gromov–Witte...

متن کامل

Givental’s Lagrangian Cone and S-equivariant Gromov–witten Theory

In the approach to Gromov–Witten theory developed by Givental, genus-zero Gromov–Witten invariants of a manifold X are encoded by a Lagrangian cone in a certain infinite-dimensional symplectic vector space. We give a construction of this cone, in the spirit of S-equivariant Floer theory, in terms of S-equivariant Gromov–Witten theory of X × P. This gives a conceptual understanding of the “dilat...

متن کامل

N ov 2 00 4 The local Gromov - Witten theory of curves

We study the equivariant Gromov-Witten theory of a rank 2 vector bundle N over a nonsingular curve X of genus g: (i) We define a TQFT using the Gromov-Witten partition functions. The full theory is determined in the TQFT formalism from a few exact calculations. We use a reconstruction result proven jointly with C. Faber and A. Okounkov in the appendix. X and N is equipped with the anti-diagonal...

متن کامل

Jim Bryan and Tom

We make a precise mathematical statement of the conjecture that Gromov-Witten theory on an orbifold should be equivalent to Gromov-Witten theory on a crepant resolution (should one exist.) We prove the conjecture for the equivariant Gromov-Witten theories of Symn C and Hilbn C.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008